chore: add models

This commit is contained in:
Kyle Fang
2020-02-12 10:07:46 +08:00
parent e976600961
commit ed73fe5f43
5 changed files with 166 additions and 0 deletions

166
tools/cfgs/car.yaml Normal file
View File

@@ -0,0 +1,166 @@
CLASSES: Car
INCLUDE_SIMILAR_TYPE: True
# config of augmentation
AUG_DATA: True
AUG_METHOD_LIST: ['rotation', 'scaling', 'flip']
AUG_METHOD_PROB: [1.0, 1.0, 0.5]
AUG_ROT_RANGE: 18
GT_AUG_ENABLED: True
GT_EXTRA_NUM: 15
GT_AUG_RAND_NUM: True
GT_AUG_APPLY_PROB: 1.0
GT_AUG_HARD_RATIO: 0.6
PC_REDUCE_BY_RANGE: True
PC_AREA_SCOPE: [[-40, 40], [-1, 3], [0, 70.4]] # x, y, z scope in rect camera coords
CLS_MEAN_SIZE: [[1.52563191462, 1.62856739989, 3.88311640418]]
# 1. config of rpn network
RPN:
ENABLED: True
FIXED: False
# config of input
USE_INTENSITY: False
# config of bin-based loss
LOC_XZ_FINE: False
LOC_SCOPE: 3.0
LOC_BIN_SIZE: 0.5
NUM_HEAD_BIN: 12
# config of network structure
BACKBONE: pointnet2_msg
USE_BN: True
NUM_POINTS: 16384
SA_CONFIG:
NPOINTS: [4096, 1024, 256, 64]
RADIUS: [[0.1, 0.5], [0.5, 1.0], [1.0, 2.0], [2.0, 4.0]]
NSAMPLE: [[16, 32], [16, 32], [16, 32], [16, 32]]
MLPS: [[[16, 16, 32], [32, 32, 64]],
[[64, 64, 128], [64, 96, 128]],
[[128, 196, 256], [128, 196, 256]],
[[256, 256, 512], [256, 384, 512]]]
FP_MLPS: [[128, 128], [256, 256], [512, 512], [512, 512]]
CLS_FC: [128]
REG_FC: [128]
DP_RATIO: 0.5
# config of training
LOSS_CLS: SigmoidFocalLoss
FG_WEIGHT: 15
FOCAL_ALPHA: [0.25, 0.75]
FOCAL_GAMMA: 2.0
REG_LOSS_WEIGHT: [1.0, 1.0, 1.0, 1.0]
LOSS_WEIGHT: [1.0, 1.0]
NMS_TYPE: normal
# config of testing
SCORE_THRESH: 0.3
# 2. config of rcnn network
RCNN:
ENABLED: True
# config of input
ROI_SAMPLE_JIT: True
REG_AUG_METHOD: multiple # multiple, single, normal
ROI_FG_AUG_TIMES: 10
USE_RPN_FEATURES: True
USE_MASK: True
MASK_TYPE: seg
USE_INTENSITY: False
USE_DEPTH: True
USE_SEG_SCORE: False
POOL_EXTRA_WIDTH: 1.0
# config of bin-based loss
LOC_SCOPE: 1.5
LOC_BIN_SIZE: 0.5
NUM_HEAD_BIN: 9
LOC_Y_BY_BIN: False
LOC_Y_SCOPE: 0.5
LOC_Y_BIN_SIZE: 0.25
SIZE_RES_ON_ROI: False
# config of network structure
USE_BN: False
DP_RATIO: 0.0
BACKBONE: pointnet # pointnet
XYZ_UP_LAYER: [128, 128]
NUM_POINTS: 512
SA_CONFIG:
NPOINTS: [128, 32, -1]
RADIUS: [0.2, 0.4, 100]
NSAMPLE: [64, 64, 64]
MLPS: [[128, 128, 128],
[128, 128, 256],
[256, 256, 512]]
CLS_FC: [256, 256]
REG_FC: [256, 256]
# config of training
LOSS_CLS: BinaryCrossEntropy
FOCAL_ALPHA: [0.25, 0.75]
FOCAL_GAMMA: 2.0
CLS_WEIGHT: [1.0, 1.0, 1.0]
CLS_FG_THRESH: 0.6
CLS_BG_THRESH: 0.45
CLS_BG_THRESH_LO: 0.05
REG_FG_THRESH: 0.55
FG_RATIO: 0.5
ROI_PER_IMAGE: 64
HARD_BG_RATIO: 0.8
# config of testing
SCORE_THRESH: 0.3
NMS_THRESH: 0.1
# general training config
TRAIN:
SPLIT: train
VAL_SPLIT: smallval
LR: 0.002
LR_CLIP: 0.00001
LR_DECAY: 0.5
DECAY_STEP_LIST: [100, 150, 180, 200]
LR_WARMUP: True
WARMUP_MIN: 0.0002
WARMUP_EPOCH: 1
BN_MOMENTUM: 0.1
BN_DECAY: 0.5
BNM_CLIP: 0.01
BN_DECAY_STEP_LIST: [1000]
OPTIMIZER: adam_onecycle # adam, adam_onecycle
WEIGHT_DECAY: 0.001 # L2 regularization
MOMENTUM: 0.9
MOMS: [0.95, 0.85]
DIV_FACTOR: 10.0
PCT_START: 0.4
GRAD_NORM_CLIP: 1.0
RPN_PRE_NMS_TOP_N: 9000
RPN_POST_NMS_TOP_N: 512
RPN_NMS_THRESH: 0.85
RPN_DISTANCE_BASED_PROPOSE: True
TEST:
SPLIT: val
RPN_PRE_NMS_TOP_N: 9000
RPN_POST_NMS_TOP_N: 100
RPN_NMS_THRESH: 0.8
RPN_DISTANCE_BASED_PROPOSE: True

BIN
tools/models/car.pth Normal file

Binary file not shown.

BIN
tools/models/cyclist.pth Normal file

Binary file not shown.

BIN
tools/models/pedestrian.pth Normal file

Binary file not shown.