Files
PointRCNN/lib/config.py
2019-04-16 00:46:33 +08:00

258 lines
7.1 KiB
Python

from easydict import EasyDict as edict
import numpy as np
__C = edict()
cfg = __C
# 0. basic config
__C.TAG = 'default'
__C.CLASSES = 'Car'
__C.INCLUDE_SIMILAR_TYPE = False
# config of augmentation
__C.AUG_DATA = True
__C.AUG_METHOD_LIST = ['rotation', 'scaling', 'flip']
__C.AUG_METHOD_PROB = [0.5, 0.5, 0.5]
__C.AUG_ROT_RANGE = 18
__C.GT_AUG_ENABLED = False
__C.GT_EXTRA_NUM = 15
__C.GT_AUG_RAND_NUM = False
__C.GT_AUG_APPLY_PROB = 0.75
__C.GT_AUG_HARD_RATIO = 0.6
__C.PC_REDUCE_BY_RANGE = True
__C.PC_AREA_SCOPE = np.array([[-40, 40],
[-1, 3],
[0, 70.4]]) # x, y, z scope in rect camera coords
__C.CLS_MEAN_SIZE = np.array([[1.52, 1.63, 3.88]], dtype=np.float32)
# 1. config of rpn network
__C.RPN = edict()
__C.RPN.ENABLED = True
__C.RPN.FIXED = False
__C.RPN.USE_INTENSITY = True
# config of bin-based loss
__C.RPN.LOC_XZ_FINE = False
__C.RPN.LOC_SCOPE = 3.0
__C.RPN.LOC_BIN_SIZE = 0.5
__C.RPN.NUM_HEAD_BIN = 12
# config of network structure
__C.RPN.BACKBONE = 'pointnet2_msg'
__C.RPN.USE_BN = True
__C.RPN.NUM_POINTS = 16384
__C.RPN.SA_CONFIG = edict()
__C.RPN.SA_CONFIG.NPOINTS = [4096, 1024, 256, 64]
__C.RPN.SA_CONFIG.RADIUS = [[0.1, 0.5], [0.5, 1.0], [1.0, 2.0], [2.0, 4.0]]
__C.RPN.SA_CONFIG.NSAMPLE = [[16, 32], [16, 32], [16, 32], [16, 32]]
__C.RPN.SA_CONFIG.MLPS = [[[16, 16, 32], [32, 32, 64]],
[[64, 64, 128], [64, 96, 128]],
[[128, 196, 256], [128, 196, 256]],
[[256, 256, 512], [256, 384, 512]]]
__C.RPN.FP_MLPS = [[128, 128], [256, 256], [512, 512], [512, 512]]
__C.RPN.CLS_FC = [128]
__C.RPN.REG_FC = [128]
__C.RPN.DP_RATIO = 0.5
# config of training
__C.RPN.LOSS_CLS = 'DiceLoss'
__C.RPN.FG_WEIGHT = 15
__C.RPN.FOCAL_ALPHA = [0.25, 0.75]
__C.RPN.FOCAL_GAMMA = 2.0
__C.RPN.REG_LOSS_WEIGHT = [1.0, 1.0, 1.0, 1.0]
__C.RPN.LOSS_WEIGHT = [1.0, 1.0]
__C.RPN.NMS_TYPE = 'normal' # normal, rotate
# config of testing
__C.RPN.SCORE_THRESH = 0.3
# 2. config of rcnn network
__C.RCNN = edict()
__C.RCNN.ENABLED = False
# config of input
__C.RCNN.USE_RPN_FEATURES = True
__C.RCNN.USE_MASK = True
__C.RCNN.MASK_TYPE = 'seg'
__C.RCNN.USE_INTENSITY = False
__C.RCNN.USE_DEPTH = True
__C.RCNN.USE_SEG_SCORE = False
__C.RCNN.ROI_SAMPLE_JIT = False
__C.RCNN.ROI_FG_AUG_TIMES = 10
__C.RCNN.REG_AUG_METHOD = 'multiple' # multiple, single, normal
__C.RCNN.POOL_EXTRA_WIDTH = 1.0
# config of bin-based loss
__C.RCNN.LOC_SCOPE = 1.5
__C.RCNN.LOC_BIN_SIZE = 0.5
__C.RCNN.NUM_HEAD_BIN = 9
__C.RCNN.LOC_Y_BY_BIN = False
__C.RCNN.LOC_Y_SCOPE = 0.5
__C.RCNN.LOC_Y_BIN_SIZE = 0.25
__C.RCNN.SIZE_RES_ON_ROI = False
# config of network structure
__C.RCNN.USE_BN = False
__C.RCNN.DP_RATIO = 0.0
__C.RCNN.BACKBONE = 'pointnet' # pointnet, pointsift
__C.RCNN.XYZ_UP_LAYER = [128, 128]
__C.RCNN.NUM_POINTS = 512
__C.RCNN.SA_CONFIG = edict()
__C.RCNN.SA_CONFIG.NPOINTS = [128, 32, -1]
__C.RCNN.SA_CONFIG.RADIUS = [0.2, 0.4, 100]
__C.RCNN.SA_CONFIG.NSAMPLE = [64, 64, 64]
__C.RCNN.SA_CONFIG.MLPS = [[128, 128, 128],
[128, 128, 256],
[256, 256, 512]]
__C.RCNN.CLS_FC = [256, 256]
__C.RCNN.REG_FC = [256, 256]
# config of training
__C.RCNN.LOSS_CLS = 'BinaryCrossEntropy'
__C.RCNN.FOCAL_ALPHA = [0.25, 0.75]
__C.RCNN.FOCAL_GAMMA = 2.0
__C.RCNN.CLS_WEIGHT = np.array([1.0, 1.0, 1.0], dtype=np.float32)
__C.RCNN.CLS_FG_THRESH = 0.6
__C.RCNN.CLS_BG_THRESH = 0.45
__C.RCNN.CLS_BG_THRESH_LO = 0.05
__C.RCNN.REG_FG_THRESH = 0.55
__C.RCNN.FG_RATIO = 0.5
__C.RCNN.ROI_PER_IMAGE = 64
__C.RCNN.HARD_BG_RATIO = 0.6
# config of testing
__C.RCNN.SCORE_THRESH = 0.3
__C.RCNN.NMS_THRESH = 0.1
# general training config
__C.TRAIN = edict()
__C.TRAIN.SPLIT = 'train'
__C.TRAIN.VAL_SPLIT = 'smallval'
__C.TRAIN.LR = 0.002
__C.TRAIN.LR_CLIP = 0.00001
__C.TRAIN.LR_DECAY = 0.5
__C.TRAIN.DECAY_STEP_LIST = [50, 100, 150, 200, 250, 300]
__C.TRAIN.LR_WARMUP = False
__C.TRAIN.WARMUP_MIN = 0.0002
__C.TRAIN.WARMUP_EPOCH = 5
__C.TRAIN.BN_MOMENTUM = 0.9
__C.TRAIN.BN_DECAY = 0.5
__C.TRAIN.BNM_CLIP = 0.01
__C.TRAIN.BN_DECAY_STEP_LIST = [50, 100, 150, 200, 250, 300]
__C.TRAIN.OPTIMIZER = 'adam'
__C.TRAIN.WEIGHT_DECAY = 0.0 # "L2 regularization coeff [default: 0.0]"
__C.TRAIN.MOMENTUM = 0.9
__C.TRAIN.MOMS = [0.95, 0.85]
__C.TRAIN.DIV_FACTOR = 10.0
__C.TRAIN.PCT_START = 0.4
__C.TRAIN.GRAD_NORM_CLIP = 1.0
__C.TRAIN.RPN_PRE_NMS_TOP_N = 12000
__C.TRAIN.RPN_POST_NMS_TOP_N = 2048
__C.TRAIN.RPN_NMS_THRESH = 0.85
__C.TRAIN.RPN_DISTANCE_BASED_PROPOSE = True
__C.TEST = edict()
__C.TEST.SPLIT = 'val'
__C.TEST.RPN_PRE_NMS_TOP_N = 9000
__C.TEST.RPN_POST_NMS_TOP_N = 300
__C.TEST.RPN_NMS_THRESH = 0.7
__C.TEST.RPN_DISTANCE_BASED_PROPOSE = True
def cfg_from_file(filename):
"""Load a config file and merge it into the default options."""
import yaml
with open(filename, 'r') as f:
yaml_cfg = edict(yaml.load(f))
_merge_a_into_b(yaml_cfg, __C)
def _merge_a_into_b(a, b):
"""Merge config dictionary a into config dictionary b, clobbering the
options in b whenever they are also specified in a.
"""
if type(a) is not edict:
return
for k, v in a.items():
# a must specify keys that are in b
if k not in b:
raise KeyError('{} is not a valid config key'.format(k))
# the types must match, too
old_type = type(b[k])
if old_type is not type(v):
if isinstance(b[k], np.ndarray):
v = np.array(v, dtype=b[k].dtype)
else:
raise ValueError(('Type mismatch ({} vs. {}) '
'for config key: {}').format(type(b[k]), type(v), k))
# recursively merge dicts
if type(v) is edict:
try:
_merge_a_into_b(a[k], b[k])
except:
print(('Error under config key: {}'.format(k)))
raise
else:
b[k] = v
def cfg_from_list(cfg_list):
"""Set config keys via list (e.g., from command line)."""
from ast import literal_eval
assert len(cfg_list) % 2 == 0
for k, v in zip(cfg_list[0::2], cfg_list[1::2]):
key_list = k.split('.')
d = __C
for subkey in key_list[:-1]:
assert subkey in d
d = d[subkey]
subkey = key_list[-1]
assert subkey in d
try:
value = literal_eval(v)
except:
# handle the case when v is a string literal
value = v
assert type(value) == type(d[subkey]), \
'type {} does not match original type {}'.format(type(value), type(d[subkey]))
d[subkey] = value
def save_config_to_file(cfg, pre='cfg', logger=None):
for key, val in cfg.items():
if isinstance(cfg[key], edict):
if logger is not None:
logger.info('\n%s.%s = edict()' % (pre, key))
else:
print('\n%s.%s = edict()' % (pre, key))
save_config_to_file(cfg[key], pre=pre + '.' + key, logger=logger)
continue
if logger is not None:
logger.info('%s.%s: %s' % (pre, key, val))
else:
print('%s.%s: %s' % (pre, key, val))