mirror of
https://github.com/zhigang1992/AI_for_video_games_demo.git
synced 2026-01-12 22:45:47 +08:00
Lock down gym version
This commit is contained in:
@@ -71,7 +71,7 @@ def policy_iteration(env, gamma = 1.0):
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_name = 'FrozenLake8x8-v0'
|
||||
env = gym.make(env_name)
|
||||
env = gym.make(env_name).unwrapped
|
||||
optimal_policy = policy_iteration(env, gamma = 1.0)
|
||||
scores = evaluate_policy(env, optimal_policy, gamma = 1.0)
|
||||
print('Average scores = ', np.mean(scores))
|
||||
|
||||
2
requirements.txt
Normal file
2
requirements.txt
Normal file
@@ -0,0 +1,2 @@
|
||||
gym[all]==0.9.4
|
||||
numpy
|
||||
@@ -75,7 +75,7 @@ def value_iteration(env, gamma = 1.0):
|
||||
if __name__ == '__main__':
|
||||
env_name = 'FrozenLake8x8-v0'
|
||||
gamma = 1.0
|
||||
env = gym.make(env_name)
|
||||
env = gym.make(env_name).unwrapped
|
||||
optimal_v = value_iteration(env, gamma);
|
||||
policy = extract_policy(optimal_v, gamma)
|
||||
policy_score = evaluate_policy(env, policy, gamma, n=1000)
|
||||
|
||||
Reference in New Issue
Block a user